Cholesky decomposition

Results: 129



#Item
41Numerical linear algebra / Matrix theory / Matrices / Singular value decomposition / Orthogonal matrix / Matrix / Principal component analysis / Cholesky decomposition / Eigendecomposition of a matrix / Algebra / Linear algebra / Mathematics

arXiv:1104.5557v3 [cs.DS] 15 Nov[removed]Randomized algorithms for matrices and data∗ Michael W. Mahoney† Abstract

Add to Reading List

Source URL: arxiv.org

Language: English - Date: 2011-11-15 21:19:36
42Numerical linear algebra / Matrices / Numerical software / Matrix theory / LAPACK / CUDA / Matrix / Symmetric matrix / Cholesky decomposition / Algebra / Linear algebra / Mathematics

Matrix computations on the GPU CUBLAS and MAGMA by example Andrzej Chrz¸ eszczyk

Add to Reading List

Source URL: developer.nvidia.com

Language: English - Date: 2014-10-22 14:33:13
43Numerical linear algebra / Matrix theory / Matrices / Cholesky decomposition / Incomplete Cholesky factorization / Adjacency matrix / Singular value decomposition / Orthogonal matrix / Matrix / Algebra / Linear algebra / Mathematics

Scaling Manifold Ranking Based Image Retrieval Yasuhiro Fujiwara† , Go Irie‡ , Shari Kuroyama∗ , Makoto Onizuka§† †NTT Software Innovation Center, [removed]Midori-cho Musashino-shi, Tokyo, Japan ‡NTT Service E

Add to Reading List

Source URL: www.vldb.org

Language: English - Date: 2014-11-12 16:58:00
44Numerical linear algebra / LAPACK / Tridiagonal matrix / QR algorithm / Singular value decomposition / Cholesky decomposition / QR decomposition / LU decomposition / Out-of-core algorithm / Algebra / Linear algebra / Mathematics

ST-HEC: Reliable and Scalable Software for Linear Algebra Computations on High End Computers James Demmel (U California, Berkeley) and Jack Dongarra (U Tennessee, Knoxville) 1

Add to Reading List

Source URL: www.cs.berkeley.edu

Language: English - Date: 2004-10-14 13:17:36
45Numerical linear algebra / Matrix theory / Multiplication / Matrices / Cholesky decomposition / Matrix / Algorithm / Multiplication algorithm / Eigendecomposition of a matrix / Algebra / Linear algebra / Mathematics

Avoiding Communication in Dense Linear Algebra Grey Ballard Electrical Engineering and Computer Sciences University of California at Berkeley

Add to Reading List

Source URL: www.sandia.gov

Language: English - Date: 2013-10-08 19:17:49
46Numerical linear algebra / Matrix theory / Sparse matrices / Matrices / Matrix multiplication / Sparse matrix / Matrix / LU decomposition / Cholesky decomposition / Algebra / Linear algebra / Mathematics

SIAM J. MATRIX ANAL. & APPL. Vol. 32, No. 3, pp. 866–901 © 2011 Society for Industrial and Applied Mathematics MINIMIZING COMMUNICATION IN NUMERICAL

Add to Reading List

Source URL: www.sandia.gov

Language: English - Date: 2013-10-08 19:02:10
47Numerical linear algebra / Cholesky decomposition / LU decomposition / Matrix decomposition / QR decomposition / Application checkpointing / QR algorithm / LAPACK / Sum / Algebra / Linear algebra / Mathematics

Algorithm-based Fault Tolerance for Dense Matrix Factorizations Peng Du Aurelien Bouteiller

Add to Reading List

Source URL: icl.cs.utk.edu

Language: English - Date: 2012-05-23 13:00:46
48Numerical linear algebra / Matrices / Singular value decomposition / Matrix / Symmetric matrix / Cholesky decomposition / Kernel / Algebra / Linear algebra / Mathematics

Precision Refinement for Media-Processor SoCs: fp32→ fp64 on Myriad 1 2 Tomasz Szydzik

Add to Reading List

Source URL: www.hotchips.org

Language: English - Date: 2014-08-04 15:31:27
49Numerical linear algebra / Matrix decomposition / Cholesky decomposition / Matrix / Lis / Preconditioner / Dynamic random-access memory / Mathematical optimization / System of linear equations / Algebra / Linear algebra / Mathematics

DRAM or no-DRAM? Exploring Linear Solver Architectures for Image Domain Warping in 28 nm CMOS Michael Schaffner∗† , Frank K. G¨urkaynak∗ , Aljoscha Smolic† , Luca Benini∗‡ ∗ ETH Z¨urich, 8092 Z¨urich, Sw

Add to Reading List

Source URL: www.disneyresearch.com

Language: English - Date: 2015-03-09 18:38:34
50Numerical linear algebra / Mathematical optimization / Operations research / Regression analysis / Least squares / Linear programming / Quadratic programming / Cholesky decomposition / Sparse matrix / Mathematics / Algebra / Numerical analysis

tsnnls: A solver for large sparse least squares problems with non-negative variables Jason Cantarella∗ Department of Mathematics, University of Georgia, Athens, GA[removed]Michael Piatek†

Add to Reading List

Source URL: www.michaelpiatek.com

Language: English
UPDATE